Welcome to the Leibniz Institute for Zoo and Wildlife Research!

Willkommen am Leibniz-Institut für Zoo- und Wildtierforschung (IZW)! Deutsche Version der IZW-Webseite.

The Leibniz Institute for Zoo and Wildlife Research (IZW) is an interdisciplinary research institute dedicated to developing the scientific basis for novel approaches to wildlife conservation.

In the current era of the Anthropocene, virtually all ecosystems in the world are subjected to man-made impacts. As yet, it is not possible to predict the response of wildlife to the ever-increasing global change. Why are some wildlife species threatened by anthropogenic change, while others persist or even thrive in modified, degenerated or novel habitats?

To answer this and related questions, the IZW conducts basic and applied research across different scientific disciplines. We study the diversity of life histories and evolutionary adaptations and their limits, including diseases, of free-ranging and captive wildlife species, and their interactions with people and their environment in Germany, Europe and worldwide.

The IZW is a member of the Leibniz Association and the Forschungsverbund Berlin e.V.

Asian elephant, Authors:  Priya Davidar & Jean-Philippe Puyravaud
Asian elephant, Authors: Priya Davidar & Jean-Philippe Puyravaud

Environmental change: Asian elephants may lose up to 42 percent of suitable habitats in India and Nepal until 2070

Protecting and expanding suitable habitats for wildlife is key to the conservation of endangered species, but owing to climate and land use change the ideal habitats of today may not be fitting in 30 or 50 years. An international team of scientists therefore predicted range shifts of Asian elephants in India and Nepal using species distribution models based on distribution data for the elephants and climate projections. While a few regions in the north and northeast of the subcontinent may provide more suitable habitats in the future, overall a heavy loss is probable in all scenarios. The complex effects of environmental change on the distribution of the elephants is elucidated in a paper published in the Journal „Diversity and Distributions”.

Read more …

Pipistrellus nathusii  Author: Christian Giese
Pipistrellus nathusii Author: Christian Giese

Batmobile with cruise control: Bats migrate at the most energy-efficient flying speed for maximum range

Aerial migration is the fastest, yet most energetically demanding way of seasonal movements between habitats. A new study led by scientists at the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) investigated the energy requirements and travel speeds of migrating Nathusius’ bats (Pipistrellus nathusii). Using a wind tunnel experiment to determine the exact energy demands of different flying speeds and a field study to record actual travel speeds of migrating bats, the scientists demonstrated that bats travel at the speed where their range reaches a maximum, enabling them to cover long distances with a minimum amount of energy. How the researchers tracked down this cruise control is published in the “Journal of Experimental Biology”.

Read more …

Studying species interactions using remote camera traps

Species are often involved in complex interactions with other species, which can affect their occurrence, abundance, feeding habits and disease transmission. Observing and studying species interactions can be difficult. To circumvent this problem, ecologists increasingly rely on remote devices such as camera traps. In a recent study carried out by researchers from the Leibniz Institute for Zoo- and Wildlife Research (Leibniz-IZW) in Germany and University of California, Davis, USA, the scientists explored to what extent camera trap data are suitable to assess subtle species interactions such as avoidance in space and time. The study is published in the international journal Remote Sensing in Ecology and Conservation.

Read more …

Wild Guinea Pig, photo: Anja Günther
Wild Guinea Pig, photo: Anja Günther

New epigenetic study reveals how guinea pig fathers pass on adaptive responses to environmental changes

Adaptations to environmental change are the most important asset for the persistence of any plant or animal species. This is usually achieved through genetic mutation and selection, a slow process driven by chance. Faster and more targeted are so called epigenetic modifications. They do not alter the genetic code but promote specialisations during cell maturation. A new study carried out by scientists from the Leibniz-IZW in Germany shows for wild guinea pigs that epigenetic modifications specific to individual environmental factors are passed on to the next generation. The study is published in the scientific journal “Genes”.

Read more …

Nyctalus noctula, Foto: Uwe Hoffmeister
Nyctalus noctula, Foto : Uwe Hoffmeister

Multicultural creatures of habit – Long-term study reveals migratory patterns of bats

Every year trillions of animals migrate for thousands of kilometres between their summer and winter areas. Among them are several species of bats whose journeys in the dark of the night unfold largely unnoticed by humans and have only partially been investigated by science. A reconstruction of individual migration patterns of the common noctule (Nyctalus noctula) in Central Europe has now revealed that travelling distances vary largely among individuals, yet overall females cover longer distances than males. Local bat populations, which remain separate when females rear their offspring in summer, strongly mix in their hibernacula, the roost where they hibernate in winter. Additionally the study showed that individuals rarely change their migration habits – a behaviour that could prove problematic when bats are forced to adjust to rapidly changing ecosystems. The study was published in the „Proceedings of the Royal Society: Biological Sciences“.

Read more …

                                                                                                               more news...