Functional biodiversity of cells belonging to the reproductive system

The evolution of reproductive strategies causes species-specific peculiarities of reproductive processes. The function of cells within the reproductive tracts may also change in dependence of development, cycle or season. We analyse the basic cellular and molecular processes to understand the functional adaptations in reproduction.

Project details
Duration: Since 09/2012
Third-party funded: partly
Involved Department(s): Dept Reproduction BiologyDept Wildlife Diseases, Dept Evolutionary Genetics
Leibniz-IZW Project Leader(s): Beate Braun, Karin Müller (all: Dept Reproduction Biology)
Leibniz-IZW Project Team:

Katarina Jewgenow, Jennifer Zahmel, Michal Hryciuk, Shauna Kehoe, Pascal Kroh (all: Dept Reproduction Biology), Gabor Czirják, Gudrun Wibbelt, Claudia Szentiks (all: Dept Wildlife Diseases), Dorina Lenz, Daniel Förster (all: Dept Evolutionary Genetics)

Consortium Partner(s):

Leibniz Institute for Farm Animal Biology (FBN), Humboldt University Berlin - Institute for Biology, Institute for Reproduction of Farm Animals Schönow e.V. 

Current Funding Organisation: German Science Foundation (DFG)
Research Foci:
Understanding traits and evolutionary adaptations
Improving population viability

 

Evolutionary adaptations also occur in the field of reproduction. Species-specific reproduction strategies and peculiarities are the result. Individual development, female cyclicity and season may additionally cause transient functional changes of cells within the reproductive system.

By analysing the cellular and molecular background of reproductive processes we aim to better understand species-dependent adaptations and their consequences. This knowledge will help to design species-specific techniques of assisted reproduction. Species-specificity is crucial for each of the projects described below.

Project focus: Cell-cell-interactions

Understanding of gamete-reproductive tract interactions is a precondition to improve the outcome of assisted reproduction techniques. Options for in vivo experiments are limited for ethical and practical reasons. Establishing cell culture models (e. g. oviduct epithelial cells) to study reproductive functions in vitro is a powerful tool to generate missing knowledge (control of ovary activity, oviduct interaction with preserved sperm cells prior fertilization).

Examples: Seminal fluid which is missing or highly diluted in most cryobanked feline sperm samples increases the number of oviduct-bound sperm in vitro. This work is performed in collaboration with the Leibniz Institute for the Biology of Farm Animals, Dummerstorf. For several questions we have an essential support by colleagues from Department Wildlife Diseases (pathology, ELMI). 

Project focus: Seminal fluid

Seminal fluid is missing in sperm samples recovered from epididymides of valuable dead or castrated males, and is highly diluted in cryopreserved semen samples. We aim to decipher selected seminal fluid components (e. g. antioxidative system, spermadhesins) which improve fertilization efficiency if supplemented (e. g. by using recombinantly produced proteins) to gamete samples in artificial reproductive techniques (ART).

For example, a high antioxidative capacity in lion seminal fluid protects sperm better from cryodamage. We collaborate with GEOlifes, Hamburg, with the Unit for Reproductive Medicine at the University of Veterinary Medicine Hannover, and the Institute for Biology, Humboldt University, Berlin. In the field of immunology, we collaborate with the Department of Wildlife Diseases.

Project focus: Semen lipids and their function

The contribution of lipids as structural and functional membrane components for fertilization competence and cryotolerance of male gametes is under investigation. The protection of membrane lipids against oxidation and semen lipid repair capacity is species specific. One consequence is for instance to develop rather species-specific extender supplements like e. g. combinations of selected fatty acids than to use common native lipid supplements such as egg yolk (DFG Mu1520/4-2). This work is performed in close collaboration with the Institute of Medical Physics and Biophysics, University of Leipzig, the Institute for Reproduction of Farm Animals Schönow e.V. and the Institute for Biology, Humboldt University, Berlin.

The identification of regulatory key molecules of spermatogenesis or early folliculogenesis allows us to assess sexual maturation or seasonal reproductive changes in individuals. Moreover, it helps to identify suitable markers for testicular and ovary cell types and stages which are not yet available in many species including felids. These can be used for the characterization and improvement of in vitro cultivation of testicular and ovarian tissue/cells. Usually we are analysing different candidates on mRNA and/or protein level with different methods. Regarding the early folliculogenesis project, we have analysed the transcriptome in collaboration with the Department of Evolutionary Genetics and the BeGenDiv.

Project focus: Corpus luteum function in lynx species

Lynxes show the reproductive peculiarity of persistent corpora lutea (CL). We comprehensively characterized lynx CL in comparison to cat CL with the aim to use this knowledge for oestrous management of Iberian lynx and other feline species. Molecular expression patterns were compared between persistent lynx CL and life cycle stages of CL from domestic cat to identify factors which are responsible for CL persistency.

Beside prostaglandin E (PGE), we recognized oestrogen and prolactin as potential luteotrophic factors. Because of the restricted access to wildlife animals we successfully established protocols for short-term luteal cell cultures to further investigate luteal life cycle regulation in feline species and to develop protocols for artificial luteolysis of persistent CL.

Schematic illustration of the corpus luteum function

Selected Publications

Project focus: Cell-cell-interactions

Eder S, Bailey LD, Müller K (2020): Equilibration in freezing extender alters in vitro sperm–oviduct binding in the domestic cat (Felis catus). THERIOGENOLOGY 149, 79-87. https://doi.org/10.1016/j.theriogenology.2020.03.017.

Müller K, Eder S, Jakop U, Schiller J, Müller P, Bashawat M (2019): Assisted reproduction for felid species conservation – Sperm competences at risk. REPROD DOM ANIMAL. doi:10.1111/rda.13581.

Henry F, Eder S, Reynaud K, Schön J, Wibbelt G, Fontbonne  A, Müller K (2015): Seminal fluid promotes in vitro sperm-oviduct binding in the domestic cat (Felis catus). THERIOGENOLOGY 83, 1373-1380. doi:10.1016/j.theriogenology.2015.01.031.

Hribal R, Hachen A, Fernandez L, Zahmel J, Jewgenow K, Braun BC (2014): The influence of recombinant feline oviductin on different aspects of domestic cat (Felis catus) IVF and embryo. THERIOGENOLOGY. doi:10.1016/j.theriogenology.2014.06.009.

Project focus: Seminal fluid

Müller K, Müller P, Lui F, Kroh PD, Braun BC (2023): Porcine spermadhesin AQN-3 binds to negatively charged phospholipids. Chem Phys Lipids. 2023 Aug;254:105306. Epub 2023 May 6. PMID: 37156322. doi: 10.1016/j.chemphyslip.2023.105306.

Kroh PD, Braun BC, Lui F, Müller P, Müller K (2022): Boar spermadhesin AWN: Novel insights in its binding behavior and localization on sperm. BIOL REPROD, doi: 10.1093/biolre/ioab244 Online ahead of print.

Schulze M, Czirják GA, Müller K, Bortfeldt R, Jung M, Jakop U (2019): Antibacterial defense and sperm quality in boar ejaculates. J REPROD IMMUNOL 131, 13-20. doi:10.1016/j.jri.2018.11.001.

Luther I, Jakop U, Lueders I, Tordiffe A, Franz C, Schiller J, Kotze A, Müller K (2017): Semen cryopreservation and radical reduction capacity of seminal fluid in captive African lion (Panthera leo). THERIOGENOLOGY 89, 1–10. doi:10.1016/j.theriogenology.2016.10.024.

Schröter F, Müller K, Müller P, Krause E, Braun BC (2017): Recombinant expression of porcine spermadhesin AWN and its phospholipid interaction: indication for a novel lipid binding property. REPROD DOM ANIM 52, 585-595. doi:10.1111/rda.12953. Epub 2017 Mar 21.

Henry F, Eder S, Reynaud K, Schön J, Wibbelt G, Fontbonne A, Müller K (2015): Seminal fluid promotes in vitro sperm-oviduct binding in the domestic cat (Felis catus). THERIOGENOLOGY 83, 1373-1380. doi:10.1016/j.theriogenology.2015.01.031.

Project focus: Semen lipids and their function

Müller K, Eder S, Jakop U, Schiller J, Müller P, Bashawat M (2019): Assisted reproduction for felid species conservation – Sperm competences at risk. REPROD DOM ANIMAL, doi.org/10.1111/rda.13581.

Jakop U, Svetlichnyy V, Schiller J, Schulze M, Schroeter F, Mueller K (2019): In vitro supplementation with unsaturated fatty acids improves boar sperm viability after storage at 6 °C. ANIM REPRROD SCI 206, 60-68. doi.org/10.1016/j.anireprosci.2019.05.008.

Fasel NJ, McMillian K, Jakop U, Méné-Saffrané L, Engel KM, Genoud M, Müller K, Christe P (2019): Modification of sperm fatty acid composition during epididymal maturation in bats. REPRODUCTION 157(1):77-85 doi:10.1530/REP-18-0463.

Engel KM, Jakop U, Müller K, Grunewald S, Paasch U, Schiller J (2018): MALDI MS analysis to investigate the lipid composition of sperm. CURR ANAL CHEM 14:1-12. doi:10.2174/1573411014666181030123256.

Wegener J, Jakop U, Schiller J, Müller K (2018): The membrane phospholipid composition of honeybee (Apis mellifera) workers reflects their nutrition, fertility and vitellogenin stores. INSECT SOC 65, 381–391. doi:10.1007/s00040-018-0623-x.

Engel KM, Schiller J, Müller K, Dannenberger D, Jakop U (2017): The phospholipid composition of kangaroo spermatozoa verified by mass spectrometric lipid analysis. LIPIDS 52(10):857-869. doi: 10.1007/s11745-017-4283-9.

Brütsch SH, Rademacher M, Roth SR, Müller K, Eder S, Viertel D, Franz C, Kühn H, Borchert A (2016): Male subfertility induced by heterozygous expression of catalytically inactive glutathione peroxidase 4 is rescued in vivo by systemic inactivation of the Alox15 gene. J BIOL CHEM 291(45), 23578-23588. doi: 10.1074/jbc.M116.738930.

Schröter F, Jakop U, Teichmann A, Haralampiev I, Tannert A, Wiesner B, Müller P, Müller K (2016): Lipid Dynamics in Boar Sperm Studied by Advanced Fluorescence Imaging Techniques. EUR BIOPHYS J 45(2), 149-163. doi: 10.1007/s00249-015-1084-z. Epub 2015 Oct 19.

Svetlichnyy V, Müller P, Pomorski TG, Schulze M, Schiller J, Müller K (2014): Metabolic incorporation of unsaturated fatty acids into boar spermatozoa lipids and de novo formation of diacylglycerols. CHEM PHYS LIPIDS 177, 41-50. doi: 10.1016/j.chemphyslip.2013.11.001.

Pyttel S, Nimptsch A, Böttger J, Zschörnig K, Jakop U, Wegener J, Müller K, Paasch U, Schiller J (2014): Changes of murine sperm phospholipid composition during epididymal maturation determined by MALDI-TOF mass spectrometry. THERIOGENOLOGY 82, 396‐402. doi:10.1016/j.theriogenology. 2014.04.017.

Wegener J, K Zschörnig, K Onischke, B Fuchs, J Schiller, K Müller (2013): Conservation of Honey Bee (Apis mellifera) sperm phospholipids during storage in the bee queen - a TLC/MALDI-TOF MS Study. EXP GERONTOL 48, 213-222. http://dx.doi.org/10.1016/j.exger.2012.12.009.

 

Project focus: Key factors of gonadal development

Braun BC, Müller K (2023): Role of glyoxalase I and II in somatic and spermatogenic testicular cells during the postnatal development of the domestic cat. Theriogenology. 2023 Feb;197:10-15. Epub 2022 Nov 24. PMID: 36462331. doi: 10.1016/j.theriogenology.2022.11.028.

Bashawat M, Braun BC, Müller K, Hermann BP (2023): Molecular phenotyping of domestic cat (Felis catus) testicular cells across postnatal development - A model for wild felids. Theriogenology Wild. 2023;2:100031. Epub 2023 Apr 20. PMID: 37461433 Free PMC article. doi: 10.1016/j.therwi.2023.100031.

Kehoe S, Jewgenow K, Johnston PR, Braun BC (2022): Early preantral follicles of the domestic cat express gonadotropin and sex steroid signaling potential. BIOL REPROD 106(1), 95-107. doi: 10.1093/biolre/ioab192

Kehoe S, Jewgenow K, Johnston PR, Mbedi S, Braun BC (2021): Signalling pathways and mechanistic cues highlighted by transcriptomic analysis of primordial, primary, and secondary ovarian follicles in domestic cat. SCI REP 11, 2683. doi: 10.1038/s41598-021-82051-4.

Braun BC, Okuyama MW, Müller K, Dehnhard M, Jewgenow K (2018): Steroidogenic enzymes, their products and sex steroid receptors during testis development and spermatogenesis in the domestic cat (Felis catus). J STEROID BIOCHEM MOL BIOL, doi: 10.1016/j.jsbmb.2017.11.013.

Braun BC, Jewgenow K (2017): Expression of steroidogenic enzymes and steroid receptors in foetal gonads of domestic cat – sex similarities and differences. REPROD DOMEST ANIM 52, Suppl. 2, 130-136. doi: 10.1111/rda.12829.

Kaese M, Galuska CE, Simon P, Braun BC, Cabrera-Fuentes HA, Middendorff R, Wehrend A, Jewgenow K, Galuska SP (2015): Polysialylation takes place in granulosa cells during apoptotic processes of atretic tertiary follicles. FEBS J. 282, 4595 - 4606. doi: 10.1111/febs.13519.

Braun BC, Müller K, Jewgenow K (2015): Expression profiles of relaxin family peptides and their receptors indicate their influence on spermatogenesis in the domestic cat (Felis catus). DOMEST ANIM ENDOCRINOL 52, 25-34, doi.org/10.1016/j.domaniend.2015.01.005.

Hänsch M, Simon P, Schön J, Kaese M, Braun BC, Jewgenow K, Göritz F, Küpper J, Ahmadvand N, Geyer R, Middendorff R, Müller K, Galuska SP (2014): Polysialylation of NCAM correlates with onset and termination of seasonal spermatogenesis in roe deer. GLYCOBIOLOGY 24, 488-493. doi. 10.1093/glycob/cwu023.

Project focus: Corpus luteum function in lynx species

Hryciuk MM, Schröter F, Hennicke L, Braun BC (2023): Spheroid formation and luteinization of granulosa cells of felids in a long-term 3D culture. Differentiation. 2023 May-Jun;131:38-48. Epub 2023 Apr 6. PMID: 37079952. doi: 10.1016/j.diff.2023.03.002.

Braun BC, Jewgenow K (2022): Role of sex steroids and prostaglandins during the luteal life cycle in domestic cats and lynxes. DOMEST ANIM ENDOCRINOL 78,106689. doi: 10.1016/j.domaniend.2021.106689

Hryciuk MM, Jewgenow K, Braun BC (2021): Cloprostenol, a synthetic analog of prostaglandin F2α induces functional regression in cultured luteal cells of felids. BIOL REPROD 105(1), 137-147. doi: 10.1093/biolre/ioab070

Hryciuk MM, Jewgenow K, Braun BC (2021): Luteinizing Hormone Effect on Luteal Cells Is Dependent on the Corpus Luteum Stage in Felids. ANIMALS (BASEL) 11, 179. doi: 10.3390/ani11010179.

Braun BC, Halaski N, Painer J, Krause E, Jewgenow K (2020): The antioxidative enzyme SOD2 is important for physiological persistence of Corpora lutea in lynxes. SCI REP 10(1), 3681. doi: 10.1038/s41598-020-60634-x.

Hryciuk MM, Braun BC, Bailey LD, Jewgenow K (2019): Functional and morphological characterization of small and large steroidogenic luteal cells from domestic cats before and during culture. FRONT ENDOCRINOL e471885. doi: 10.3389/fendo.2019.00724.

Amelkina O, Zschockelt L, Painer J, Serra R, Villaespesa F, Jewgenow K, Braun BC (2017): Progesterone, estrogen and androgen receptors in the corpus luteum of the domestic cat, Iberian lynx (Lynx pardinus) and Eurasian lynx (Lynx lynx). Theriogenology, THERIOGENOLOGY 86, 2107-2118. doi: 10.1016/j.theriogenology.2016.06.026.

Zschockelt L, Amelkina O, Siemieniuch M, Kowalewski M, Dehnhard M, Jewgenow K, Braun BC (2016): Contribution of luteal prostaglandin synthesis and reception to lifespan of feline corpora lutea. REPRODUCTION 152,111-126, doi:10.1530/REP-16-0180.

Amelkina O, Zschockelt L, Painer J, Serra R, Villaespesa F, Braun BC, Jewgenow K (2015): Apoptosis-related factors in the luteal phase of the domestic cat and their involvement in the persistence of corpora lutea in lynxes. PLOS ONE 10(11): e0143414. doi:10.1371/journal.pone.0143414.

Zschockelt L, Amelkina O, Koster S, Painer J, Okuyama MW, Serra R, Vargas A, Jewgenow K, Braun BC (2015): Comparative analysis of intraluteal steroidogenic enzymes emphasises the functionality of fresh and persistent corpora lutea during pro- and metoestrus in the lynx. J STEROID BIOCHEM MOL BIOL, 10.1016/j.jsbmb.2015.07.001.

Amelkina O, Braun BC, Dehnhard M, Jewgenow K (2014): Corpus luteum during pregnancy and pseudopregnancy in domestic cat: histological classification of stages and intraluteal hormone profile. THERIOGENOLOGY 83, 711 - 720. doi: 10.1016/j.theriogenology.2014.11.008.

Zschockelt L, Amelkina O, Siemieniuch MJ, Jewgenow K, Braun BC (2014): Corpora lutea of pregnant and pseudopregnant domestic cats reveal equal steroidogenic capacities during the luteal life span. J STEROID BIOCHEM MOL BIOL 144, 373 - 381. doi: 10.1016/j.jsbmb.2014.08.010.