Understanding wildlife health and disturbed homeostasis

The research focus on wildlife health is an essential component of the Leibniz-IZW Research Programme and directly contributes to the institute’s mission of conducting evolutionary wildlife research for conservation. With this mission we work towards the vision of understanding and improving the adaptability of wildlife in the face of global change.

In our vision to understand adaptability, wildlife health is a major factor. Diseases can render populations more vulnerable to environmental change, and conversely, anthropogenic impacts can make wildlife more susceptible to disease. We investigate how individuals cope with allostatic load (“stress”), infectious as well as non-infectious diseases and how these factors interact with (other) environmental change(s).

This programme goal is directly addressed in the following projects, among others:

Comparative environmental epigenomics in wildlife

Epigenetic changes function as flexible mechanisms to increase a species' adaptability to environmental changes, but past studies have focused mostly on maternal effects. Here we study parental transmitted epigenetic responses and ask also if different environmental changes invoke different or similar responses.

Characterization of the retroviral germline invasions using the koala retrovirus as a model

We use the koala retrovirus to understand how viruses, retroviruses in particular, have shaped a large part of vertebrate genomes, what the consequences of the process are for the host, and identify host defence mechanisms.

Health status and diseases in the middle European lowland wolf population

Wolves in Germany are predominantly in the area of conflict between hunters, cattle and sheep breeders, nature conservation associations, politics and the general public. The Leibniz-IZW provides evidence-based research results that form the basis for wolf management in Germany.

Behavioural ecology and evolutionary biology of the spotted hyena population in the Ngorongoro Crater

How – and how well – do group-living animals respond to social and environmental change? To address this question, we study the evolution of social behaviour and behavioural and evolutionary processes shaping the life history and fitness of group-living animals using an entire population of wild spotted hyenas (eight groups, more than 2500 individuals) that we have been monitoring since 1996 and for which we compiled an almost complete genetic pedigree across nine generations.

Eco-immunology of carnivores with low immunogenetic diversity

In this project we study the immune phenotype as well as the parasites and pathogens of two feline species, the cheetah (Acinonyx jubatus) and the Iberian lynx (Lynx pardinus).

Wildlife endocrinology

Wildlife endocrinology is largely based on non-invasive monitoring of reproductive and adrenocortical hormones of zoo-and wildlife. Our laboratory has the expertise, reagents and instruments availalbe for related research and is experienced in method development and validation for a variety of species and matrices. Most commonly explored matrices in our laboraty are faeces, urine and hair.

Strengthening scientific approaches in wildlife welfare

With its expertise in animal welfare, the Leibniz-IZW contributes to an appropriate management of animals in human care and significantly improves science-based approaches and methods for it.

Health, demography, ecological dynamics and anthropogenic effects on spotted hyeans in the Serengeti National Park

We study the behaviour, ecology and health of spotted hyenas (Crocuta crocuta) in the Serengeti National Park since 1987, and currently hold detailed information on more than 2300 individuals in three clans.