Department of Evolutionary Ecology: Projects

Evidence-based solutions for the farmer-cheetah conflict in Namibia

Conflicts between humans, their livestock and carnivores are globally widespread. Developing sustainable solutions is challenging, particularly for threatened carnivore species. We demonstrate with the example of cheetahs in Namibia how detailed information on spatial movements of cheetahs can be used by farmers to adapt their cattle management. This results in substantial decrease of cattle losses and thus in reduced killing of cheetahs by farmers.

Movement ecology of common noctule bats in anthropogenic landscapes

The research of this project is dedicated to the questions of how highly mobile species such as the common noctule bat (Nyctalus noctula) survive in intensively used farmland or in city landscapes and which factors influence individual behaviour and local populations.

Behavioural ecology and evolutionary biology of the spotted hyena population in the Ngorongoro Crater

How – and how well – do group-living animals respond to social and environmental change? To address this question, we study the evolution of social behaviour and behavioural and evolutionary processes shaping the life history and fitness of group-living animals using an entire population of wild spotted hyenas (eight groups, more than 2500 individuals) that we have been monitoring since 1996 and for which we compiled an almost complete genetic pedigree across nine generations.

Evidence-based habitat and species protection of African and Asian rhinos

Rhinos are severely threatened by poaching and the loss of their habitat. As a consequence, the remaining individuals are confined to small, fractured populations. This project investigates the reasons for this drastic decline and attempts to identify solutions that may prevent imminent extinction events.

Physiology, ecology and conservation of migratory bats

In this project the researchers investigate how migratory bats find their way when traveling over thousands of kilometres each year and which specific threats they are exposed to when moving across anthropogenically shaped landscapes.

Applied hedgehog conservation research

This project aims to investigate how hedgehogs adapt to urban living conditions in order to develop improved protection measures for hedgehogs in close dialog with all interest groups and establish them in society.

The effect of artificial light at night on nocturnal mammals

Surface area lit by artificial light at night increases by 2 percent each year. In this project we investigate how nocturnal animals such as bats respond to the illumination and which solutions we can offer to mitigate or compensate the potentially detrimental effects of light pollution on bats.

Good reproduction and health status in a genetically monomorphic species, the cheetah

In this project we investigate the effect of the low genetic variability of cheetahs on their reproductive performance and their health status. We demonstrate that free-ranging cheetahs reproduce successfully and have a strong immune system despite their genetic monomorphism. We also demonstrate that breeding challenges of captive cheetahs can be improved with a well-directed management.

Powering endurance: Fuel selection in migratory bats

The aim of this project is to investigate, why bats and birds seem to have similar adaptations in their metabolic physiology to migrate over long distances.