Welcome to the Leibniz Institute for Zoo and Wildlife Research!

Willkommen am Leibniz-Institut für Zoo- und Wildtierforschung (IZW)! Deutsche Version der IZW-Webseite.

The Leibniz Institute for Zoo and Wildlife Research (IZW) is an interdisciplinary research institute dedicated to developing the scientific basis for novel approaches to wildlife conservation.

In the current era of the Anthropocene, virtually all ecosystems in the world are subjected to man-made impacts. As yet, it is not possible to predict the response of wildlife to the ever-increasing global change. Why are some wildlife species threatened by anthropogenic change, while others persist or even thrive in modified, degenerated or novel habitats?

To answer this and related questions, the IZW conducts basic and applied research across different scientific disciplines. We study the diversity of life histories and evolutionary adaptations and their limits, including diseases, of free-ranging and captive wildlife species, and their interactions with people and their environment in Germany, Europe and worldwide.

The IZW is a member of the Leibniz Association and the Forschungsverbund Berlin e.V.

Studying species interactions using remote camera traps

Species are often involved in complex interactions with other species, which can affect their occurrence, abundance, feeding habits and disease transmission. Observing and studying species interactions can be difficult. To circumvent this problem, ecologists increasingly rely on remote devices such as camera traps. In a recent study carried out by researchers from the Leibniz Institute for Zoo- and Wildlife Research (Leibniz-IZW) in Germany and University of California, Davis, USA, the scientists explored to what extent camera trap data are suitable to assess subtle species interactions such as avoidance in space and time. The study is published in the international journal Remote Sensing in Ecology and Conservation.

Read more …

Wild Guinea Pig, photo: Anja Günther
Wild Guinea Pig, photo: Anja Günther

New epigenetic study reveals how guinea pig fathers pass on adaptive responses to environmental changes

Adaptations to environmental change are the most important asset for the persistence of any plant or animal species. This is usually achieved through genetic mutation and selection, a slow process driven by chance. Faster and more targeted are so called epigenetic modifications. They do not alter the genetic code but promote specialisations during cell maturation. A new study carried out by scientists from the Leibniz-IZW in Germany shows for wild guinea pigs that epigenetic modifications specific to individual environmental factors are passed on to the next generation. The study is published in the scientific journal “Genes”.

Read more …

Nyctalus noctula, Foto: Uwe Hoffmeister
Nyctalus noctula, Foto : Uwe Hoffmeister

Multicultural creatures of habit – Long-term study reveals migratory patterns of bats

Every year trillions of animals migrate for thousands of kilometres between their summer and winter areas. Among them are several species of bats whose journeys in the dark of the night unfold largely unnoticed by humans and have only partially been investigated by science. A reconstruction of individual migration patterns of the common noctule (Nyctalus noctula) in Central Europe has now revealed that travelling distances vary largely among individuals, yet overall females cover longer distances than males. Local bat populations, which remain separate when females rear their offspring in summer, strongly mix in their hibernacula, the roost where they hibernate in winter. Additionally the study showed that individuals rarely change their migration habits – a behaviour that could prove problematic when bats are forced to adjust to rapidly changing ecosystems. The study was published in the „Proceedings of the Royal Society: Biological Sciences“.

Read more …

Lung lavage at rhino  (Foto: Jonathan Cracknell)
Lung lavage at rhino (Foto: Jonathan Cracknell)

Lung lavage as new test method improves tuberculosis diagnosis in rhinoceros

Diseases and tuberculosis in particular can pose considerable challenges for wildlife. In order to avoid epidemics within populations or to treat individual animals belonging to highly endangered species, fast and reliable tests are paramount. However present tuberculosis testing in rhinos relies on skin tests developed in the 1960s and designed for cattle bearing high risk of false diagnosis in rhinos. To improve diagnostic standards an international team of scientists lead by institutes in Berlin and Jena, Germany, performed repeated lung lavage as a new approach for tuberculosis diagnosis in rhinoceros. Subsequent genetic tests reliably identified mycobacteria in the animals’ respiratory fluids – with minimal stress and risk for the rhinos. The study has been published in the journal PLOS ONE. 

Read more …

Hyena cubs (photo: Sarah Benhaiem)
Hyena cubs (photo: Sarah Benhaiem)

Hyena population recovered slowly from a disease epidemic

Infectious diseases can substantially reduce the size of wildlife populations, thereby affecting both the dynamics of ecosystems and biodiversity. Predicting the long-term consequences of epidemics is thus essential for conservation. Researchers from the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) in Berlin and from the Center for Functional Ecology and Evolution (CEFE) in Montpellier, France, have now developed a mathematical model ("matrix model") to determine the impact of a major epidemic of canine distemper virus (CDV) on the population of spotted hyenas in the Serengeti National Park in Tanzania. The results of the study are published in the new Nature open-access journal Communications Biology.

Read more …

                                                                                                               more news...